lunes, 29 de febrero de 2016

Aminoácidos!

¿Qué es un aminoácido?

Todos los aminoácidos comparten una estructura química común. Un grupo de amino (representado químicamente como NH2) está unido a un átomo de carbono (el carbono central o alfa) que después se une a otro átomo de carbono. Éste se encuentra en la forma de ácido carboxílico (abreviatura química COOH). El grupo de amino y el grupo de ácido carboxílico tienen una participación crucial en los enlaces que se forman entre los aminoácidos cuando se sintetizan las proteínas.
¿Qué diferencias hay entre los distintos aminoácidos? Los aminoácidos son diferentes en virtud de la presencia de diferentes grupos químicos unidos al átomo de carbono alfa, lo que se conoce comúnmente como cadenas laterales.

Los aminoácidos y el agua o la grasa

Dependiendo de la cadena lateral que esté presente en el carbono alfa, un aminoácido en particular puede tener un comportamiento químico muy diferente. Debido a la naturaleza química de las diferentes cadenas laterales que se utilizan, hay grupos de aminoácidos que no les afecta ser sumergidos en agua, éstos son los aminoácidos hidrofílicos. Los aminoácidos hidrofílicos, pueden sumergirse en el ambiente acuoso del interior de la célula, sin ver su naturaleza afectada. También existen aquellos aminoácidos que no se detectan en el agua, sino que prefieren ocultarse en la grasa o en las suspensiones oleosas. Éstos son los aminoácidos hidrófobos, como los que se encuentran en los confines de las membranas celulares.
Entre algunos ejemplos de aminoácidos hidrófilos (“amantes del agua”) podemos incluir la lisina, la arginina, el ácido aspártico y el ácido glutámico. Entre los ejemplos de aminoácidos hidrófobos (“temor al agua”) podemos nombrar la leucina, la isoleucina, la fenilalanina y la valina.

La síntesis de las proteínas a partir de los aminoácidos

Las proteínas son polímeros lineales de aminoácidos. Las instrucciones que están codificadas en nuestros genes especifican el orden en que los aminoácidos específicos deben unirse entre sí para formar una proteína en particular, tal como la insulina. El primer aminoácido en la cadena dona parte de su grupo de ácido carboxílico para formar parte de un enlace químico con el grupo de amino del aminoácido siguiente en la cadena y así, sucesivamente a medida que el polímero se sintetiza. Cuando se termina una cadena, el primer aminoácido todavía tiene un grupo de amino no utilizado, por lo que se conoce como el amino terminal. Del mismo modo, el último aminoácido de la cadena tiene un grupo ácido carboxílico no utilizado y por lo tanto, el final de la proteína se conoce como carboxilo terminal.
Los aminoácidos son necesarios en nuestra dieta todos los días. Las células humanas pueden sintetizar 10 aminoácidos. Los otros 10 aminoácidos restantes utilizados habitualmente, debemos adquirirlos a través de nuestra dieta. Éstos son los llamados aminoácidos esenciales, entre ellos podemos nombrar la arginina, la histidina la lisina, la metionina, la isoleucina, la leucina, la fenilalanina, la valina, la treonina y el triptófano. Necesitamos todos estos aminoácidos no sólo con el fin de crear las proteínas celulares que nuestro cuerpo requiere para su buen funcionamiento, sino también para la síntesis de otros compuestos e incluso, en casos seleccionados, para utilizarlos como señales del sistema nervioso.

Álcalis!

Los álcalis son un grupo de sales formadas a partir de los metales alcalinos o de los metales alcalino térreos (Grupos I y II de la tabla periódica). El término "alcalino" o "alcalina" también se utiliza para referirse a sustancias que son bases (es decir, que tienen un pH mayor a 7). Sin embargo a pesar de que todos los metales alcalinos son bases, no todas las bases son metales alcalinos.
¿Cuáles son las propiedades de los álcalis?

Propiedades físicas

test tube image by Oleg Verbitsky from Fotolia.com
Los metales alcalinos y los metales alcalinotérreos se componen de elementos comunes tales como el sodio, potasio, magnesio y calcio. Los compuestos formados por estos metales toman sus nombres de ellos. Son altamente solubles en agua y los álcalis formado a partir de ellos crean compuestos altamente jabonosas cuando se combinan con agua. Los álcalis se utilizaron por primera vez por los seres humanos para hacer jabón debido a su deslizamiento sobre la piel. En concentraciones más altas pueden ser cáusticos y causar quemaduras químicas, por lo que es importante tener cuidado al usarlos.

Reactividad

test tube image by Oleg Verbitsky from Fotolia.com
Todos los metales alcalinos y alcalinotérreos son altamente reactivos, más aún con los elementos con números atómicos mayores que aquellos con números más bajos. Esto significa que tienden a perder un electrón para tener una carga general positiva, y se unen con halógenos, tales como el cloro. La sal de mesa es un ejemplo de uno de los compuestos que se forman así como otros tipos de sales.

Aplicaciones

test tube image by Oleg Verbitsky from Fotolia.com
Los metales alcalinos son tan reactivos que nunca se encuentran en su estado natural puro. Cuando se combinan con agua reaccionan con tanta fuerza que pueden provocar una pequeña explosión. En el agua esta reacción forma hidróxidos, tales como el hidróxido de sodio y el hidróxido de potasio. Los nombres comunes de estas sustancias incluyen la lejía, la sosa, la potasa o alumbre y la cal. Se han utilizado por los seres humanos para la limpieza y para la fabricación durante siglos.

Ácidos!



Los ácidos son compuestos que presentan en su estructura molecular uno o más atomos de hidrógeno, los cuales al disolverse en el agua se liberan en forma de catión H+ llamado: ión hidrógeno, protón o hidrogenón.
Los ácidos tienen propiedades opuestas a las bases, así:
  • enrojecen al papel tornasol
  • incoloran la solución de fenolftaleina
  • neutralizan los hidróxidos o bases
  • tienen sabor agrio
  • corroen metales
Según su composición, los ácidos inorgánicos se clasifican en dos grupos: hidrácidos (poseen hidrógenos y un no metal) y oxácidos (poseen hidrógeno, no metal y oxígeno)
Ácidos hidrácidos:
Son compuestos binarios que forma el hidrógeno por combinación quimica con elementos no metálicos de los grupos VIA (S, Se, Te) y del grupo VIIA (F, Cl, Br, I); por lo tanto no poseen oxígeno en su molécula.
La nomenclatura tradicional establece que se coloque el nombre genérico ácido seguido del nombre del no metal terminando en el sufijo hídrico (más usado en solución acuosa)
La nomenclatura sistemática emplea el sufijo uro para nombrar el anión y a continuación se nombra el catión.
FormulaciónFórmulaN. TradicionalN. Sistemática
H+1 S-2H2Sácido sulfhídricosulfuro de hidrógeno
H+1 Se-2H2Seácido selenhídricoseleniuro de hidrógeno
H+1 Te-2H2Teácido telurhídricoteleruro de hidrógeno
H+1 F-1HFácido fluorhídricofluoruro de hidrógeno
H+1 Cl-1HClácido clorhídricocloruro de hidrógeno
El ácido muriático que se utiliza como poderoso germicida en los servicios higiénicos, es el ácido clorhídrico comercial y posee un 36% en peso de HCl
El ácido clorhídrico también es componente del agua regia, la única mezcla que disuelve el oro.
El ácido fluorhídrico ataca al vidrio y la porcelana por lo que no puede ser almacenado en recipientes de estos materiales.
El sulfuro de hidrógeno es una sustancia reconocida por su olor desagradable (olor a huevo podrido) y es un gas venenoso.
Ácidos oxácidos:
Son compuestos ternarios, en general se obtienen por reacción química de un oxido ácido (anhidrido) y el agua. Se diferencian de los hidrácidos en que estos no poseen oxígeno y los oxácidos si poseen oxígeno.
Anhidrido + H2O → oxácido
Ejemplos:
1. Ácido sulfúrico (S = 2 , 4 , 6)
SO3 (anhidrido sulfúrico) + H2O → H2SO4
2. Ácido bromoso (Br = 1, 3, 5, 7)
Br2O3 (anhidrido bromoso) + H2O → 2 HBrO4
3. Ácido hipoteluroso (Te = 2, 4, 6)
TeO (anhidrido hipoteluroso) + H2O → 2 H2TeO2
Clasificación de los Oxácidos:
1. Polihidratados: Los óxidos ácidos de ciertos no metales pueden combinarse con mas de una molécula de agua, para diferenciarlos se utilizan los prefijos: piro, meta y orto; según la siguiente tabla:
PrefijoElemento – valencia imparElemento – valencia par
meta1 anhidrido + 1 H2O1 anhidrido + 1 H2O
piro1 anhidrido + 2 H2O2 anhidrido + 1 H2O
orto1 anhidrido + 3 H2O1 anhidrido + 2 H2O
Ejemplos:
  • Ácido pirocarbonoso (C = , 4) , valencia par
          2 CO + H2O → H2C2O3
  • Ácido ortofosfórico (P = 1, 3, 5)
          P2O5 (anhidrido bromoso) + 3 H2O → H6P2O8 → H3PO4
El prefijo meta implica una combinación simple de anhidrido y agua, por lo tanto es un oxácido simple y generalmente se omite este prefijo.
Los´oxácidos polihidratados tipo piro, también se nombran como un ácido poliácido utilizando el prefijo di, porque poseen dos átomos de no metal.
Ejemplos:
  • H4P2O5 : ácido piro fosforoso , ácido difosforoso
  • H4As2O7 : ácido piro arsénico , ácido diarsénico
El prefijo orto indica la presencia de 3 átomos de hidrógeno si el no metal posee valencia impar y 4 átomos de hidrógeno si posee valencia par. Los oxácidos mas importantes de B, P, As, Sb, Si son  de este tipo y generalmente se omite el prefijo orto en su nomenclatura.
  • H3BO3 : ácido ortobórico o bórico
  • H3PO3 : ácido ortofosforoso o fosforoso
  • H3PO4 : ácido ortofosfórico o fosfórico
2. Poliácidos: Se caracterizan porque sus moléculas poseen 2 o más átomos del no metal por lo cual se usan en la nomenclatura clásica, prefijos: di, tri, tetra, etc., delante del no metal cuando el ácido posee dos, tres, cuatro átomos no metálicos respectivamente..
Obtención general:
“n” anhidrido + H2O → poliácido
Ejemplos:
  • 2 Cl2O3 + H2O → H2Cl4O7 : ácido tetraclórico
  • 2 SO3 + H2O → H2S2O7 : ácido disulfúrico
3. Peroxiácidos ( peroxoácidos): Se caracterizan porque poseen 1 átomo de oxígeno más que el oxácido correspondiente. En su nomenclatura se utiliza el prefijo peroxi o peroxo y solo son estables para el estado de oxidación mas alto del no metal.
Estructuralmente, se considera que los peroxiácidos resultan de sustituir átomos de oxígeno (O-2) del oxácido correspondiente por el grupo peróxido (O2-2)
Formulación práctica:
Oxácido + O → peroxácido
 

Proteínas!


Las proteínas son las moléculas que hacen el ser, entendido en el sentido de que son el fenotipo, que es lo que caracteriza externamente a un individuo. Estructuralmente son polímeros formados por la unión de los monómeros llamados aminoácidos, cada uno con una estructura como la que aparece a la izquierda, es decir, tienen una función ácida y una básica como su nombre indica. En estas moléculas, como en los azúcares, se puede apreciar un centro de asimetría en el carbono (el C2, después del carbono carboxílico), pero la diferencia es que en los aminoácidos la familia más numerosa es la L. Se cuentan veinte aminoácidos proteinogenéticos, cada uno de los cuales tiene una cadena lateral R distinta, y se unen entre sí formando péptidos mediante enlaces amida, por lo que el enlace se llama peptídico. Las proteínas son en realidad péptidos con un elevado número de restos (así se llama a cada monómero que forma parte de una cadena), y pueden actuar solas o combinadas para realizar la función propia de cada una de ellas, desde la visión (opsina) hasta la defensa del organismo (anticuerpos), pasando por la contracción muscular (miosina y actina), la formación de estructuras de soporte (citoesqueleto) y la catálisis a modo de enzimas como función más representativa (pero ya sabemos que hay moléculas de ARN capaces de catalizar determinadas reacciones, que son las ribozimas).
Las vías de la información.
Las proteínas son moléculas informativas porque son una copia codificada de la información contenida en el ADN. Si observamos el mecanismo de síntesis se una proteína desde que a la célula llega la primera señal correspondiente (una hormona u otra señal de cualquier tipo), ocurre que después de la cascada de segundos mensajeros y reacciones intermediarias, en el núcleo se activan uno o más genes mediante la acción de unos determinados factores de transcripción (recordar que si la hormona es esteroídica, el complejo receptor-hormona es ya un factor de transcripción). Estos factores se unen a los promotores y potenciadores de la expresión del gen en cuestión gracias a unas estructuras especiales en la doble hélice de ADN, y permiten que se sintetice una cadena de ARN mensajero tomando como molde una de las dos hebras del gen. Sin embargo, los genes en el ADN no son continuos, y hay espacios en los que no se dice nada con función estructural, así que el ARN recién formado tiene que eliminar esas secuencias, llamadas intrones, para dejar una sola hebra en la que se puedan leer los trozos de gen que tienen sentido estructural (los exones) sin saltos. Se utiliza la palabra “leer” porque es eso realmente lo que hacen los sistemas de transcripción, que es el proceso que se acaba de describir: Se comienza a sintetizar el ARN desde un extremo y nucleótido a nucleótido, reproduciendo fielmente lo que está en el ADN, como quien lee letras una detrás de la otra y las transcribe en un papel, sólo que aquí se tienen únicamente cuatro.
El ARN recién sintetizado en el núcleo pasa al citoplasma rápidamente para ser traducido, es decir, hay que pasar la información contenida en una clave de cuatro letras, que son las bases púricas y pirimidínicas de los ácidos nucleicos, a una clave de veinte letras, que son los aminoácidos proteinogenéticos. La maquinaria enzimática encargada de la traducción, que es el nombre que se da al proceso, es el ribosoma. Éstos son unos enormes complejos nucleoproteicos (compuestos de ARN y proteínas) visibles al microscopio electrónico y con categoría de orgánulo, generalmente asociados al retículo endoplásmico rugoso o libres en el citoplasma. La traducción es algo necesariamente rápido porque el ARN es muy inestable, a diferencia del ADN, que es mucho más estable y además está protegido por su propia conformación de doble hélice (en el ARN sólo hay una) y por las proteínas básicas presentes en el núcleo, con las que forma complejos. De este modo, ninguna proteína podría estar fabricándose de forma constante a partir de sólo una molécula de ARN, con lo que se asegura la reversibilidad del proceso. En la traducción el paso de una base cuatro a una base veinte se permite mediante un código denominado genético, en el que a cada aminoácido le corresponde un conjunto de tres nucleótidos. Es decir, el ARN se tiene que leer de tres en tres para poder traducir la información contenida en él. Además de códigos para cada aminoácido, también están codificadas en grupos de tres nucleótidos (tripletes) las secuencias de comienzo y final de la traducción, es decir, no todo el ARN se traduce porque se empieza y se acaba sin llegar a los extremos. Como a cada aminoácido le corresponde más de un triplete, se dice que el código es degenerado. Recientemente se ha descubierto que son veintiuno los aminoácidos proteinogenéticos, porque se ha incorporado la selenocisteína al grupo. Ésta se incorpora gracias a una modificación en un ARNt de serina.
Forma y estructura.
Después de tener el polímero de aminoácidos fabricado, todavía tiene que sufrir una serie de modificaciones, tanto espontáneas como catalizadas, para poder tomar su forma definitiva, llamada conformación nativa. Esta será la única forma en la que la proteína pueda realizar la función para la que ha sido diseñada, porque es esencial la distribución espacial de las distintas cadenas R de cada aminoácido para que se pueda formar un sitio en el que la catálisis sea posible (ver 1 Introducción). La forma definitiva de una proteína viene codificada en gran parte por la propia secuencia de aminoácidos, de tal modo que las interacciones débiles que se establecen entre los distintos radicales R (fuerzas de Van der Waals, puentes de hidrógeno, fuerzas iónicas e interacciones hidrofóbicas) son capaces de obligar a la cadena a formar determinadas estructuras en distintos órdenes de complejidad, llamadas estructuras secundarias, supersecundarias, dominios y estructuras terciarias (la estructura primaria es la propia secuencia de aminoácidos). Adquiriendo las distintas estructuras queda entonces la proteína como un esqueleto carbonado, que así se llama a la hilera de átomos implicados en los enlaces peptídicos (N-C-C-N-C-C...), del que sobresalen distintos grupos funcionales, que son los que llevan los diferentes grupos R. Con tal diversidad de funciones químicas de las que echar mano, no es de extrañar que las proteínas sean las moléculas catalíticas más importantes de la vida.
Sin embargo el plegamiento no está totalmente determinado por la estructura primaria, sino que hay unas moléculas muy pequeñas, llamadas chaperoninas (del inglés chaperon: carabina, acompañante), que se unen al péptido en formación y le ayudan a alcanzar su conformación definitiva; es decir, el plegamiento en el medio celular está asistido.
Algunas proteínas no tienen suficiente información para realizar por sí mismas la función para la que se han sintetizado, por lo que se unen a moléculas pequeñas, generalmente vitaminas, que realizan la función, generalmente oxidación y reducción reversibles, pero dirigidas y modificadas según la cadena polipeptídica en cuestión. Es decir, hay varias moléculas que están presentes como cofactores en muchas enzimas diferentes, pero que ven modificada su ación por la proteína a la que se unan, como si fueran instrumentos “tontos” que pueden hacer algo, pero que la proteína les dice dónde y cómo. Además la acción de las enzimas puede verse modificada por distintas transformaciones covalentes como la fosforilación, palmitoilación, DP-ribosilación o unión a una cadena terpénica para trasladarla a la membrana desde el citoplasma.
Definición y características de las proteínas.
El término “proteína” viene del griego proteios (ðρðððððð), que significa “el primero, en la preeminencia”. Se les dio ese nombre por la creencia generalizada de que tenía que haber sido la primero molécula viva sobre la Tierra, dado que su función principal y de la que depende toda la vida conocida es la de catalizar las reacciones celulares, incluida la replicación y la traducción. Esto en principio planteó la cuestión irresoluble de cómo había sido capaz el ADN de asumir las funciones de transferencia y conservación de la herencia, siendo una molécula tan monótona y simple comparada con las proteínas Cuando se descubrió la ribozima, la teoría vigente hasta la fecha que postulaba que las proteínas tenían que haber sido lo primero porque si no, no habría replicación, se cambió por la teoría de “el ARN antes”, pero sin embargo el nombre de “proteína” ya estaba muy bien asentado. De hecho, sin las proteínas no se nos podría reconocer, porque son la expresión de la información genética, es decir, el fenotipo, y son tan importantes que representan el 50% del total del peso seco de una célula.
Funciones de las proteínas.
Como ya se ha dicho, la función más importante de las proteínas es la de ejercer como catalizadores biológicos de las reacciones que se llevan a cabo en la célula (recordar 1 Introducción). Su eficacia es tal que como media aumentan un millón de veces la velocidad de la reacción sin catalizar. Otra función muy importante es la de actuar como transporte y almacenamiento de iones, como la transferrina de la sangre y la ferritina del hígado. Además son el soporte y el mecanismo del movimiento coordinado, ya sea macroscópico, como la miosina del músculo, o microscópico, como los filamentos de actina en la locomoción por pseudópodos. También son el soporte para la acción de estos movimientos, tanto dentro como fuera de la célula: el colágeno de la matriz y los microfilamentos del citoesqueleto, respectivamente. Tienen una misión muy importante relacionada con las dos anteriores, que es el desplazamiento de los cromosomas a lo largo del huso acromático durante la mitosis y la meiosis.
Otras funciones desarrolladas por proteínas son la transmisión del impulso nervioso (son los receptores de los neurotransmisores en la neurona postsináptica), la regulación y el control del crecimiento celular mediante receptores y la modulación de la expresión génica a cualquier nivel de síntesis o de degradación. La última función en esta lista, pero no la menos importante, es la defensa del organismo frente a infecciones, mediada tanto por los anticuerpos como por los receptores de las células T. Hay más funciones desarrolladas por proteínas; tantas como sean necesarias para llevar a cabo todas las funciones de un organismo vivo.

Grabas!

La grava es el término que se le da en geología y construcción, a las rocas con un tamaño granular específico. Más específicamente hablando, es cualquier roca suelta con un tamaño entre 2 y 64 milímetros. Las rocas de menor tamaño están clasificadas como arena y las de mayor tamaño que la grava, son los adoquines. La grava también se divide en dos grupos: la granular, de 2 a 4 milímetros, y el guijarro, de 4 a 64 milímetros.

La grava es el resultado de la fragmentación de rocas, que puede ser de manera natural o producido por el hombre. En este último caso, la grava se puede llamar “piedra partida” o “chancada”. En el caso de las piedras naturalmente redondeadas por el movimiento en los ríos, se denominan “canto redondo”. También existen otras gravas naturales de otras clases. En la fragmentación artificial, las rocas son chancadas o trituradas en lugares llamados plantas de áridos. Las rocas utilizadas para la grava son normalmente de caliza, granito, basalto, dolomita y cuarzo, entre otras.

Los lugares más comunes para extraer grava son los bancos de sedimentación, construidos especialmente para recoger el material fino que arrastran los ríos. También se extraen desde los mismos lechos de los ríos en donde se acumulan las piedras. Otras zonas de extracción son los pozos secos, en donde alguna vez hubo un cuerpo de agua. Finalmente, están las canteras, en donde se explotan los mantos rocosos, generalmente de los cerros, por medio de detonaciones.

En la ejecución del hormigón o concreto, la grava también se suele llamar “agregado grueso”. En este caso, la calidad de la grava es de suma importancia, para lograr excelentes estructuras de concreto, con durabilidad y resistencia. La grava para concreto es extraída de lugares seleccionados y luego, es analizada en laboratorios para asegurarse de que tenga una gran calidad. El tamaño mínimo de las piedras debe ser de 4,8 milímetros, de formas cúbicas, y deben estar limpias de cualquier material extraño.

La grava es un producto comerciable muy importante y con una amplia variedad de aplicaciones. Se utiliza mucho para construir caminos y superficies, especialmente en zonas rurales con poco tráfico. A nivel mundial, hay muchos más caminos hechos de grava que de concreto. Sólo en Rusia hay 400000 kilómetros de caminos construidos con grava. Además, la grava es muy importante por su uso, como se mencionó antes, como unos de los principales componentes, junto con la arena, para realizar concreto. Actualmente, China es el principal productor de grava en el mundo, desplazando a Estados Unidos, que alguna vez fue el líder.

Alcohol!


Los alcoholes son  compuestos orgánicos que contienen un grupo hidróxilo (-OH), que se encuentra unido a una cadena hidrocarbonada a través de un enlace covalente a un átomo de carbono con hibridación sp3, mientras que los compuestos que poseen un grupo hidróxilo unido a uno de los átomos de carbono de un doble enlace se conocen como enoles, y los compuestos que contienen un grupo hidróxilo unido a un anillo de benceno se llaman fenoles

clasificación de los alcoholes


Los alcoholes se clasifican en primarios, secundarios y terciarios, dependiendo del carbono funcional al que se una el grupo hidroxilo.



  • Alcohol primario: se utiliza la Piridina (Py) para detener la reacción en el aldehído Cr03 / H+ se denomina reactivo de Jones, y se obtiene un ácido carboxílico.
  • Alcohol secundario: se obtiene una cetona + agua.
  • Alcohol terciario: si bien se resisten a ser oxidados con oxidantes suaves, si se utiliza uno enérgico como lo es el permanganato  de  potasio, los alcoholes terciarios se oxidan dando como productos una cetona con un número menos de átomos de carbono, y se libera metano.

Y a su vez los alcoholes se pueden clasificar según el número de grupos hidroxilos que contenga el compuesto:
-      Monoalcohol o Monol: Son  alcoholes que tienen un solo grupo hidroxilo (–OH), y son aquellos que  pueden clasificarse como alcoholes primarios, secundarios y terciarios.

  -   Polialcoholes: Son compuestos que tienen dos o más grupos hidroxilos (–OH).


Nomenclatura de alcoholes
 1. Se elige como cadena principal la de mayor longitud que contenga el grupo -OH.

nomenclatura-alcoholes

 2.  Se numera la cadena principal para que el grupo -OH tome el localizador más bajo.  El grupo hidroxilo tiene preferencia sobre cadenas carbonadas, halógenos, dobles y triples enlaces.

nomenclatura-alcoholes

 3. El nombre del alcohol se construye cambiando la terminación -o del alcano con igual número de carbonos por -ol

nomenclatura-alcoholes

 4. Cuando en la molécula hay grupos grupos funcionales de mayor prioridad, el alcohol pasa a serun mero sustituyente y se llama hidroxi-.  Son prioritarios frente a los alcoholes: ácidos carboxílicos, anhídridos, ésteres, haluros de alcanoilo, amidas, nitrilos, aldehídos y cetonas.

nomenclatura-alcoholes

5. El grupo -OH es prioritario frente a los alquenos y alquinos.  La numeración otorga el localizador más bajo al -OH y el nombre de la molécula termina en -ol.

nomenclatura-alcoholes


Usos 


Los alcoholes se utilizan como productos químicos intermedios y disolventes en las industrias de textiles, colorantes, productos químicos, detergentes, perfumes, alimentos, bebidas, cosméticos, pinturas y barnices. Algunos compuestos se utilizan también en la desnaturalización del alcohol, en productos de limpieza, aceites y tintas de secado rápido, anticongelantes, agentes espumígenos y en la flotación de minerales.    



PROPIEDADES FÍSICAS DE LOS ALCOHOLES 


se basan principalmente en su estructura. El alcohol esta compuesto por un alcano y agua. Contiene un grupo hidrofóbico (sin afinidad por el agua) del tipo de un alcano, y un grupo hidroxilo que es hidrófilo (con afinidad por el agua), similar al agua. De estas dos unidades estructurales, el grupo –OH da a los alcoholes sus propiedades físicas características, y el alquilo es el que las modifica, dependiendo de su tamaño y forma.

Azucares!




Los azúcares son hidratos de carbono generalmente blancos y cristalinos, solubles en agua y con un sabor dulce.

Los monosacáridos son azúcares simples

Clasificación de monosacáridos basado en el número de carbonos
Número de
Carbonos
CategoríaEjemplos
4TetrosaEritrosa, Treosa
5PentosaArabinosa, Ribosa, Ribulosa, Xilosa, Xilulosa, Lixosa
6HexosaAlosa, Altrosa, Fructosa, Galactosa, Glucosa, Gulosa, Idosa, Manosa, Sorbosa, Talosa, Tagatosa
7HeptosaSedoheptulosa, Manoheptulosa
Las estructuras de los sacáridos se distinguen principalmente por la orientación de los grupos hidroxilos (-OH). Esta pequeña diferencia estructural tiene un gran efecto en las propiedades bioquímicas, las características organolepticas (e.g., sabor), y en las propiedades físicas como el punto de fusión y la rotación específica de la luz polarizada. Un monosacárido de forma lineal que tiene un grupo carbonilo (C=O) en el carbono final formando un aldehído (-CHO) se clasifica como una aldosa. Cuando el grupo carbonilo está en un átomo interior formando una cetona, el monosacárido se clasifica como una cetosa.

Tetrosas

D-EritrosaD-Treosa
D-EritrosaD-Treosa

Pentosas

D-Ribosa
D-Ribosa
D-Arabinosa
D-Arabinosa
D-Xilosa
D-Xilosa
D-Lixosa
D-Lixosa
La forma anular de la ribosa es un componente del ácido ribonucleico (ARN). La desoxirribosa, que se distingue de la ribosa por no tener un oxígeno en la posición 2, es un componente del ácido desoxirribonucleico (ADN). En los ácidos nucleicos, el grupo hidroxilo en el carbono numero 1 se reemplaza con bases nucleótidas.
β-D-Ribosaβ-D-Desoxirribosa
RibosaDesoxirribosa

Hexosas

Hexosas, como las que están ilustradas aquí, tienen la fórmula molecular C6H12O6. El químico alemán Emil Fischer (1852-1919) identificó los estereoisómeros de estas aldohexosas en 1894. Por este trabajo recibió un Premio Nobel en 1902.
D-Alosa
D-Alosa
D-Altrosa
D-Altrosa
D-Glucosa
D-Glucosa
D-Manosa
D-Manosa

D-Gulosa
D-Gulosa
D-Idosa
D-Idosa
D-Galactosa
D-Galactosa
D-Talosa
D-Talosa
Estructuras que tienen configuraciones opuestas solamente en un grupo hidroxilo, como la glucosa y la manosa, se llaman epímeros. La glucosa, también llamada dextrosa, es el azúcar más predominante en las plantas y los animales, y es el azúcar presente en la sangre. La forma lineal de la glucosa es un aldehído polihídrico. En otras palabras, es una cadena de carbonos con varios grupos hidroxilos y un grupo aldehído. La fructosa, también llamada levulosa, está ilustrada aquí en forma lineal y anular. La relación entre estas formas se discute más tarde. La fructosa y la glucosa son los principales hidratos de carbono en la miel.
D-Tagatosa - Forma cetosa
D-Tagatosa
(una cetosa)
D-Fructosa - Forma cetosa
 D-Fructosa

Fructosa

Fructosa
α-D-Galactosa

Galactosa
α-D-Manosa

Manosa

Heptosas

La sedoheptulosa tiene la misma estructura que la fructosa, pero con un carbono adicional. La sedoheptulosa se encuentra en las zanahorias. La manoheptulosa es un cetoazúcar de 7 carbonos que posee la configuración de la manosa y se encuentra en los aguacates.
D-Sedoheptulosa D-Manoheptulosa
D-Sedoheptulosa D-Manoheptulosa

Formas lineales y anulares

Los monosacáridos pueden existir en formas lineales y formas anulares, como se ha ilustrado anteriormente. La forma anular es más favorecida en soluciones acuosas, y el mecanismo de la formación de las formas cíclicas es semejante en todos los azúcares simples. La forma anular de la glucosa se crea cuando el oxígeno del carbono numero 5 se enlaza con el carbono que forma el grupo carbonilo (el carbono numero 1) y transfiere su hidrógeno al oxígeno del carbonilo para crear un grupo hidroxilo. Estos intercambios producen alfa-glucosa cuando el grupo hidroxilo resulta en el lado opuesto al grupo -CH2OH, o beta-glucosa cuando el grupo hidroxilo resulta en el mismo lado que el grupo -CH2OH. Isómeros como estos, que se diferencian solamente en la configuración del carbono del grupo carbonilo, se llaman anómeros. La letra D en el nombre se derivó originalmente de la propiedad de las soluciones de glucosa natural que desvían el plano de la luz polarizada a la derecha (dextrorotatoria), aunque ahora la letra denota una configuración específica. Monosacáridos que tienen formas cíclicas pentagonales, como la ribosa, se llaman furanosas. Azúcares con formas cíclicas hexagonales, como la glucosa, se llaman piranosas.

D-Glucosa
D-Glucosa
(una aldosa)
Ciclación de la glucosa
Ciclación de la glucosa

alfa-D-Glucosa

α-D-Glucosa

beta-D-Glucosa

β-D-Glucosa